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Abstract
Casimir energy is a nonlocal effect; its magnitude cannot be deduced from
heat-kernel expansions, even those including the integrated boundary terms.
On the other hand, it is known that the divergent terms in the regularized
(but not yet renormalized) total vacuum energy are associated with the heat-
kernel coefficients. Here a recent study of the relations among the eigenvalue
density, the heat kernel and the integral kernel of the operator e−t

√
H is

exploited to characterize this association completely. Various previously
isolated observations about the structure of the regularized energy emerge
naturally. For over 20 years controversies have persisted stemming from the
fact that certain (presumably physically meaningful) terms in the renormalized
vacuum energy density in the interior of a cavity become singular at the
boundary and correlate to certain divergent terms in the regularized total energy.
The point of view of the present paper promises to help resolve these issues.

PACS numbers: 02.60.Lj, 03.70.+k, 11.10.Gh

1. Introduction

The aim of this paper is to bring order and completeness into a welter of observations
in the physics literature about various contributions to quantum vacuum energy (before
renormalization) and their relations to the heat-kernel expansion. The primary tool is the
systematic theory of Riesz means of spectral densities and their relation to the asymptotic
expansions of various integral kernels associated with the central partial differential operator
of the field theory (e.g., [20]); the Casimir energy, regularized by an exponential ultraviolet
cut-off, is identifiable with certain terms in these expansions [18]. Both total energy and
local energy density are considered; for the latter, we concentrate on the singular asymptotic
behaviour near a boundary, which was the subject of considerable calculational attention and
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physical controversy two decades ago (e.g., [12, 31]), when the Casimir effect was of great
interest as a model of quantum effects in cosmology (and in the bag model of hadrons).
Interest in Casimir energy has recently resurged because of greatly improved experiments
[5, 33, 38, 42] and hints of technological application [9]. With it, the controversies have also
reemerged (e.g., [24, 35, 36]). (More complete bibliographical citations appear later in their
proper contexts.)

Section 2 sets up notation and summarizes the needed background information about
the asymptotic expansions of integral kernels and the Riesz means of eigenvalue densities.
Section 3 concerns the energy density of a scalar field, with emphasis on the instructive
example of parallel plates with Robin boundary conditions; to avoid confusion in the quantum
theory later, it is important to note that the scalar field’s energy contains, already at the classical
level, a term concentrated on the boundary, unless the conformal-coupling parameter is given
the nonstandard value 1

4 . The heart of the paper is section 4, where the structures of the
asymptotic expansions of the heat kernel and the total regularized energy (as functions of an
auxiliary ‘time’) and of the renormalized energy density (as function of the distance from the
boundary) are presented and then correlated in dimensions 1–3. In section 5 we review
the controversies over infinite boundary terms in the energy and draw some conclusions on
the basis of the observations in the previous section.

2. Notation and framework

Let H be a self-adjoint, elliptic, second-order differential operator, independent of t. (To avoid
some extraneous complications later, let us also assume that the spectrum of H is nonnegative.)
Then the (hyperbolic) wave equation

∂2φ

∂t2
= −Hφ (2.1)

defines a field theory with time-translation invariance. Here we consider only scalar fields,
but the extension to, for instance, the electromagnetic field would be straightforward. Also,
we are primarily concerned here with cavities in flat space, without potentials, so that H is
just the negative of the Laplacian equipped with certain boundary conditions; however, most
of what follows applies with only minor complications to more general operators

H = −g(x)µν∇A
µ ∇A

ν + V (x)

with gravitational, gauge and scalar potentials.
For present purposes, we take the regularized vacuum energy of the quantum field to be

defined as

E(t) ≡ 1

2

∑
n

ωn e−ωnt (2.2)

where ωn
2 are the eigenvalues of H, and t is a parameter with dimensions of time—not the

physical time in (2.1). (Of course, at this point one is assuming that H has only discrete
spectrum. Continuous spectrum is normally associated with an unbounded region in space,
for which one would not expect a finite total energy to exist.) The physical (renormalized)
energy is identified with the constant term in the asymptotic expansion of E(t) as t → 0, in
keeping with the expectation that each mode of the field with frequency ω should contribute
energy 1

2ω. Formula (2.2) is a standard, but admittedly arbitrary, and recently somewhat
unfashionable, way of regularizing the energy. The relation of this and other ‘ultraviolet’ or
‘cut-off’ regularizations to the now more popular ‘analytic’ methods (notably dimensional
regularization and zeta functions) has been clarified by several authors [1, 11, 30, 43–46].
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In quantum field theory one has not only a total energy but also a local energy density,
T00(x) (and, indeed, an energy–momentum (stress) tensor, Tµν(x)). The energy density
remains meaningful in unbounded regions, where the total energy is not defined (and H may
have continuous spectrum). There is a formal expression for T00(x) as a sum or integral over
the spectrum, the summand being built out of the eigenfunctions, or the spectral projection
kernel, and their derivatives at x; for the details we refer to the literature (e.g., [3]) and section 3.
From that expression a regularized quantity T00(x; t) is defined by inserting an exponential
cut-off in precise analogy with (2.2). In fact, it is known that this approach is not quite
adequate when spatial curvature, or indeed any potential, is present, because trace anomalies
arise; the conceptually closest adequate approach is then covariant point splitting (e.g., [6]).
That complication is irrelevant, however, to cavities in flat space without potentials, which are
our concern at present.

Let d be the spatial dimension, let M denote the d-dimensional region in question (where
H acts) and let t be an auxiliary variable ranging from 0 to +∞. The well-known heat kernel,
K(t, x, y) ≡ 〈x|e−tH |y〉, solves the heat equation associated with H, in the sense that

u(t, x) ≡
∫

M

K(t, x, y)f (y) dy

is the unique solution of the (parabolic) initial-value problem

∂u

∂t
= −Hu u(0, x) = f (x).

It is well known that K possesses an asymptotic expansion of the form

K(t) ∼
∞∑

s=0

bst
− d

2 + s
2 . (2.3)

More precisely: (a) if x is a point in the interior of M, then the diagonal value K(t, x, x)

has an expansion of form (2.3), where bs depends on x. (b) When M is bounded, the ‘trace’∫
M

K(t, x, x) dx has an expansion of form (2.3). (The second statement is not a trivial
consequence of the first, because expansion (a) is nonuniform in distance from the boundary.
In fact, for a flat-space cavity bs(x) in (a) is zero for all s > 0, but the same is not true for
the number bs in (b).) For a cavity, b0 in (b) is proportional to the volume of M, and the
higher coefficients are integrals over the boundary of M whose details depend on the boundary
conditions and on the curvature of the boundary. For a more general H, similar local integral
formulae for bs in terms of the potentials, curvature, etc inside M and on its boundary are
known in great detail for small values of s, their calculation for ever-increasing s being a major
mathematical industry (e.g., [32]).

The less well-known cylinder kernel, T (t, x, y) ≡ 〈x|e−t
√

H |y〉, can be defined similarly:

u(t, x) ≡
∫

M

T (t, x, y)f (y) dy

is the unique bounded solution of the (elliptic) boundary-value problem

∂2u

∂t2
= +Hu u(0, x) = f (x).

(The region in (t, x)-space is a semiinfinite cylinder with base M.) The counterpart of (2.3) is

T (t) ∼
∞∑

s=0

est
−d+s +

∞∑
s=d+1

s−d odd

fst
−d+s ln t . (2.4)
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(Again, (2.4) has both (a)- and (b)-type interpretations.) The central fact relating these
expansions (which in essence appears in [11, section 3]) is

Theorem.

1. If s − d is even or negative,

es = π−1/22d−s�

(
d

2
− s

2
+

1

2

)
bs (2.5)

(and fs = 0).
2. If s − d is odd and positive,

fs = (−1)(s−d+1)/2π−1/22d−s+1 1

�
(

s
2 − d

2 + 1
2

)bs (2.6)

whereas es is undetermined by the heat-kernel expansion.

Before explaining where this theorem comes from, we make some remarks upon it. First,
in (2.5) and (2.6) the gamma functions have no zeros or poles for the relevant values of
the parameters; therefore, a zero or nonzero bs is always associated, respectively, with a
zero or nonzero value for the coefficient on the left-hand side of the equation. Second, the
‘new’ coefficients es (s − d odd and positive) are inherently global in their dependence on
the geometry of M: there are no local integral formulae like those for bs (and hence for the
left-hand sides of (2.5) and (2.6)) [22]. Third (see section 4), the renormalized vacuum energy
is equal to − 1

2e1+d (the first of the new, nonlocal coefficients) from expansion (b), plus possible
local terms. (Note that a purely local formula for vacuum energy would imply that the energy
associated with parallel plates is independent of their separation, hence that there is no Casimir
force!) Fourth, for a particular H any or all of the logarithmic coefficients fs may happen to
vanish, but the nonlocal, independent nature of the corresponding es persists in such a case.

The theorem can be proved by relating the two expansions, (2.3) and (2.4), to certain
‘moments’ (in a generalized sense of the word) characterizing the asymptotic behaviour of the
eigenvalue density (or of a local spectral density, the inverse Laplace transform of K(t, x, x),
in the ‘untraced’ (a) situation). One suitable set of such quantities consists of residues and
values, at certain points, of the zeta functions associated with the operators H and

√
H . In

that case the proof is an adaptation and generalization of the proof of lemma 2.2 of [21]. (See
also [11].) We omit the details, citing only the crucial equation

ζ√
H(2s) = ζH (s). (2.7)

An alternative set, with more direct spectral and physical significance, consists of
the Riesz means of the eigenvalue density. These are the rigorous counterpart of the
formal high-frequency asymptotic expansions of the eigenvalue density whose term-by-term
Laplace transforms yield the expansions (2.3) and (2.4). The importance of Riesz means in
understanding (2.4), and vice versa, has been developed in [17, 19, 20]. (Papers [13–15] are
related.) The present paper demonstrates the usefulness of that work in physics. We shall
review it here, using the language appropriate to the ‘traced’ (b) situation.

Riesz means [27–29] generalize the Cesàro means used in place of partial sums to
accelerate the convergence of Fourier series. Let µ(λ) be the number of eigenvalues of
H less than λ (the counting function, or ‘spectral staircase’). Write

λ = ω2 (ω > 0). (2.8)
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(Thus, if λ is an eigenvalue, ω is the frequency of the normal mode(s) of the wave equation
associated with λ; also, ω is the corresponding eigenvalue of

√
H .) For a positive integer α

the Riesz mean Rα
λµ(λ) is defined by averaging µ over an α-dimensional simplex:

Rα
λµ(λ) ≡ 1

α!
λ−α

∫ λ
α· · ·

∫
µ(λ̃) dλ̃ (2.9)

where α successive indefinite integrations are implied. (This operation can be reexpressed as
a single integral with a nontrivial kernel function.) A different sequence of Riesz means is
defined by integration over ω:

Rα
ωµ(ω) ≡ 1

α!
ω−α

∫ ω
α· · ·

∫
µ(ω̃2) dω̃. (2.10)

Starting from the known properties of the heat-kernel expansion (2.3), one can prove the
finite asymptotic approximations

Rα
λµ =

α∑
s=0

aαsλ
d−s

2 + O
(
λ

d−α−1
2

)
(2.11)

Rα
ωµ =

α∑
s=0

cαsω
d−s +

α∑
s=d+1

s−d odd

dαsω
d−s ln ω + O(ωd−α−1 ln ω). (2.12)

Here the a coefficients are related quite directly to the heat-kernel coefficients:

bs = �
(

d+s
2 + 1

)
�(s + 1)

ass . (2.13)

(The aαs with α 	= s have similar formulae, which we ignore here because those coefficients
contain no additional information.) Similarly, the c and d coefficients are related to the cylinder
expansion by [ψ ≡ (ln �)′]

es = �(d + 1)

�(s + 1)
css if d − s is even or positive (2.14)

fs = −�(d + 1)

�(s + 1)
dss es = �(d + 1)

�(s + 1)
[css + ψ(d + 1)dss] if d − s is odd and negative.

(2.15)

The final link is the connection between (css, dss) and ass . In [20] the ratio of css to ass

was given as a complicated finite sum of gamma functions. However, hidden in the appendix
of [20] (because the authors did not appreciate their significance at the time) are formulae that,
after some routine manipulation, yield the relatively simple result

css = �
(

d
2 − s

2 + 1
2

)
�

(
d
2 + s

2 + 1
)

2s�
(

d
2 + 1

2

)
�

(
d
2 + 1

) ass if d − s is even or positive. (2.16)

When d − s is odd and negative (when the first factor in the numerator of (2.16) has a pole),
[20] shows that css is undetermined by ass while dss comes into existence:

dss = (−1)d+1

(s − d − 1)!d!

�
(

s
2 − d

2

)
�

(− d
2 − s

2

)ass if d − s is odd and negative. (2.17)

Equations (2.5) and (2.6) now follow from (2.13)–(2.17) with aid of

�(z)�
(
z + 1

2

) = √
π21−2z�(2z) �(−z)�(z + 1) = −π

sin πz
. (2.18)
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Note that the Riesz means (2.9) and (2.10) provide two families of definitions of an
‘averaged density of states’ with certain weightings. More precisely, Rα

λµ or Rα
ωµ somehow

describes the averaged asymptotic behaviour of the eigenvalue density µ′(λ) at high frequency,
but it also contains constants of integration summarizing what happens to µ′(λ) at low
frequency. (As α increases, the smoothing out of the eigenvalue distribution becomes more
drastic, so that expansions (2.11) or (2.12) can be meaningfully extended to a higher order; but
at the same time, the contribution from the lower frequencies becomes more dominant.) The
crucial fact is that the coefficients in the omega-mean expansion (equivalently, those in the
cylinder-kernel expansion) contain more information than the coefficients in the lambda-mean
(or the heat-kernel) expansion. Specifically, css for s − d odd and positive is an independent,
nonlocal spectral invariant. In particular, s − d = 1 corresponds (modulo local terms) to the
Casimir vacuum energy.

3. Energy density, Robin boundary conditions and parallel plates

The energy density of a scalar field in flat spacetime is (e.g., [3])

T00 = 1

2

[(
∂φ

∂t

)2

+ (1 − 4ξ)(∇φ)2 − 4ξφ∇2φ

]
(3.1)

where ξ is an arbitrary number called the conformal coupling constant. In curved spacetime ξ

derives from a term (in the Lagrangian or the equation of motion) coupling φ to the curvature;
in a gravitational context, therefore, different values of ξ correspond to different physical
theories. In flat space, however, ξ does not appear in the equation of motion, nor in the
spectral decomposition of H, and the terms proportional to ξ in (3.1) form a total divergence,
−2ξ∇ · (φ∇φ). The facile conclusion is that all values of ξ yield the same total energy and
hence are physically equivalent. We shall see, however, that subtleties arise at both classical
and quantum levels.

Because it leads to nontrivial phenomena even in one dimension, it is instructive to study
the Robin boundary condition,

∂φ

∂n
= γφ. (3.2)

Here γ (x) is, in general, a function defined on the boundary of the region M, and ∂
∂n

is the
outward normal derivative. Dimensionally, γ is an inverse length. Romeo and Saharian [41]
have recently made an exhaustive study of the Casimir-like situation of two parallel plates with
a constant value of γ on each plate. (A continuing series of papers by Saharian and coworkers
address similar issues in more complicated geometries). Of course, the special cases of the
Neumann (γ = 0) and Dirichlet (formally,γ = ∞) boundary conditions have been understood
for a long time. With the sign convention in (3.2), our condition of nonnegative spectrum for
H is guaranteed by taking γ negative; Romeo and Saharian consider both signs of γ (which
they call β−1), ignoring the contributions to the energy from modes with negative eigenvalues,
which do not affect the renormalization theory.

If M is bounded, one should be able to integrate T00 over M to obtain a conserved energy.
(For parallel plates, integration in the perpendicular dimension yields an energy per unit plate
area.) In fact, in the Robin theory it is necessary to include in the energy a surface term
concentrated on the boundary:

E ≡
∫

M

T00(x) ddx +
1

2
(4ξ − 1)

∫
∂M

γ φ2 dS (3.3)



Systematics of the relationship between vacuum energy calculations and heat-kernel coefficients 6863

(where dS is the element of (d − 1)-dimensional surface area on the boundary, ∂M). A
calculation, using the equation of motion (2.1) for φ and an integration by parts, shows that
∂E
∂t

= 0, the boundary term being essential for this result if γ 	= 0 and ξ 	= 1
4 . Such a term

was apparently introduced into quantum field theory—through a different rationale—in [31].
Classically, the term is presumably related to the fact that a one-dimensional Robin problem
models a vibrating string attached to a point mass, which can exchange energy with the string
(e.g., [10], p 15).

Three things should be noted about the boundary term in (3.3). First, it is a completely
classical matter; in particular, it is not a renormalization counterterm (at least, not yet). Second,
it arises only in the full Robin theory: it vanishes in the pure Neumann case (γ = 0) and the
Dirichlet case (φ = 0, where the conservation of E without that term can be easily verified).
Third, even in the Robin case it vanishes if ξ = 1

4 . Changing ξ (in flat space) amounts to
redefining some of the boundary energy as spread throughout the interior of M by integration
by parts, and 1

4 is the choice that moves the energy entirely into the interior. The striking
thing about this value of ξ is that it is neither the ‘minimal’ choice (ξ = 0) nor the choice that
makes the full theory, including gravitation, conformally invariant. The ‘conformal’ value is
well known to be

ξc ≡ d − 1

4d
(3.4)

which equals 0 when d = 1, equals 1
6 when d = 3 and approaches 1

4 as d → ∞.
In the quantum field theory one evaluates the expectation values of observables such as

T00(x) and E in the vacuum, or ground state, of the field. The general rule of thumb [3] for
doing so, when the observable is classically defined by a quadratic form T (φ, φ), is to evaluate
the associated bilinear form on the normal modes of the field and sum:

〈0|T |0〉 =
∑

n

T (φ̃n, φ̃
∗
n). (3.5)

Here φ̃(t, x) = (2ωn)
−1/2φn(x) e−iωnt , where φn is an eigenvector of H with eigenvalue ωn

2;
generalization to continuous spectrum is possible. (Henceforth, the vacuum bra-ket symbols
will be omitted when there is no danger of confusion.) The result of this formal calculation
is usually a divergent sum or integral, which must be regularized—perhaps by inserting an
exponential ultraviolet cut-off, exactly as in (2.2)—and ultimately renormalized. (However,
the calculations of energy density in [41] do not require an explicit regularization step; instead,
the renormalization is accomplished by isolating and subtracting at the integrand stage the
terms corresponding to the vacuum state in infinite flat space.) When such calculations were
done some 20–30 years ago for the Dirichlet and Neumann problems with parallel plates,
it was found that when ξ = ξc the (renormalized) energy density T00(x) is constant (and
nonzero) everywhere between the plates, thus yielding a finite Casimir energy (per unit area)
that must be attributed to the global configuration of the plates, not to an interaction between
the field and the boundary per se. (In the Neumann case the contribution of the mode with
ω = 0 is being ignored here. When a zero-frequency mode exists, there is no true vacuum
state, but vacuum conditions can be approached arbitrarily closely.) On the other hand, for
ξ 	= ξc the renormalized energy density includes a contribution strongly concentrated near the
plates themselves; that part is, in fact, nonintegrable, hence at least superficially inconsistent
with a finite value for the renormalized total energy. When the boundary is curved, there
are such near-boundary terms even when the coupling constant takes the conformal value,
although the singularity at the boundary is weaker in that case. The recent Robin results [41]
are a consistent extension of that picture:
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• For a single (flat) plate, the renormalized T00 vanishes if ξ = ξc, regardless of γ .
• In general, the energy density around a single plate is proportional to ξ − ξc. If x is

distance from the plate, T00(x) is proportional to x−(d+1) in the Dirichlet and Neumann
cases, and in the general Robin case it has additional terms proportional to γ kxk−(d+1)

(k = 1, . . . , d) and ln|γ x|. (Romeo and Saharian actually find an exact expression for
T00, of which these terms are merely the divergent part of the asymptotic expansion for
small x.)

• For two parallel plates, T00 is constant in the space between the plates if ξ = ξc, with a
rather complicated dependence on the parameters aγ1 and aγ2 (a being the plate separation
and γi the Robin coefficients on the two plates), which reduces for the pure Dirichlet or
Neumann problem to the known a−(d+1) dependence.

• For parallel plates with ξ 	= ξc, the result is even more complicated, but it can be written
as the sum of the effects of the individual plates (described above) plus an interaction
term that is everywhere finite.

• Romeo and Saharian perform an independent calculation of the renormalized total energy
by the zeta-function method. This calculation is independent of ξ , as the eigenvalues do
not depend on ξ . The result includes a term that depends logarithmically on an arbitrary
scale parameter—indicating that a logarithmic divergence would appear in some other
regularization methods. This term is independent of a, hence presumably unobservable.

• The authors demonstrate a certain formal consistency between their energy-density and
total-energy calculations. In particular, for a single plate they find

Evol ≡
∫ ∞

0
T00(x) dx = 4d(ξ − ξc)E

Esurf ≡ 1

2
(4ξ − 1)γ 〈0|φ(0)2|0〉 = d(1 − 4ξ)E

(3.6)

where E = Evol + Esurf is the putative total energy per unit area (on one side) of the plate.
However, they point out that the integrals defining the three quantities in (3.6) are actually
divergent. One can eliminate the volume term by taking ξ = ξc, or one can eliminate the
surface term by taking ξ = 1

4 , but not both at once.

In view of the last point, a strong case can be made that the most convenient choice of
ξ is 1

4 , rather than the traditional values, 0 or ξc. One can then avoid accounting for and
renormalizing the surface term, and one can be confident that any volume contribution must
be taken seriously, not dismissed as an artefact.

We have summarized the paper [41] at some length because the parallel-plate Robin
system is such an excellent, explicitly solvable model of the phenomena and issues that arise
in more general systems, notably cavities with curved boundaries. The principal extrinsic
curvatures of a boundary surface have the dimension of inverse length and enter calculations
or expansions of energy density and total energy in very much the same way as does the Robin
coefficient γ . The leading divergence in T00 as the boundary is approached is ubiquitous when
ξ does not have its conformal value; unlike the Dirichlet case, the classical surface term in the
total energy of the Robin system interferes with the facile dismissal of this problem as some
kind of artefact of a poor definition of energy density (whereas the nonexistence of the surface
term in the Dirichlet case shows that the problem cannot be resolved by a simple cancellation
of volume and surface contributions, either). The higher-order terms in the expansion of
T00 near the boundary, which appear for any ξ when γ 	= 0, are closely analogous to terms
that appear near curved boundaries for the electromagnetic field, as well as the conformally
coupled scalar one.
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4. Schematics of the expansions

Consider now a general cavity whose boundary is characterized by an extrinsic curvature
tensor, κ(x), and also equipped with a Robin function, γ (x). The structure of the heat
expansion (2.3), for the trace, is

K(t) ∼ t−d/2[V + St1/2 + (κ + γ )t + (κ2 + γ 2 + κγ )t3/2 + (κ3 + · · ·)t2 + · · ·]. (4.1)

Here, and in all similar equations later, all the terms are indicated very schematically: all
numerical coefficients, the integrations over ∂M , and the tensorial nature of κ when d � 3
are suppressed, as are terms involving derivatives of γ or κ (which are not important in low
orders and dimensions). V is the volume of M, and S is the surface area of M (more precisely,
the (d − 1)-dimensional volume of ∂M).

The schematic form of the (traced) cylinder expansion (2.4) now follows by the theorem
in section 2. The significance of the structure depends on the dimension. In the following
formulae, the coefficients in boldface are the new, nonlocal terms, es , and those in square
brackets are constant terms, which do not contribute to the regularized energy,

E(t) = −1

2

dT

dt
. (4.2)

(The trace of the operator e−t
√

H is
∑

n e−ωnt , so (4.2) is equivalent to (2.2).)

d = 1 : T (t) ∼ V t−1 + [S] + γ t ln t + Et + γ 2t2 + γ 3t3 ln t + Ft3 + · · · . (4.3)

(In dimension 1 there is no curvature, and the ‘surface area’ S degenerates to the number of
endpoints of the region—usually 2. The γ terms are also sums over the endpoints.)

d = 2 : T (t) ∼ V t−2 + St−1 + [κ + γ ] + (κ2 + γ 2 + κγ )t ln t + Et + (κ3 + · · ·)t2 + · · · .
(4.4)

d = 3 : T (t) ∼ V t−3 + St−2 + (κ + γ )t−1 + [κ2 + γ 2 + κγ ] + (κ3 + · · ·)t ln t + Et + · · · .
(4.5)

The untraced kernel expansions can be discussed similarly, but there is less to say. In the
cavity setting, where there are no potentials or spatial curvature, the local heat expansion is
trivial:

K(t, x, x) ∼ t−d/2 + O(t∞). (4.6)

The local cylinder expansion, therefore, has the structure

T (t, x, x) ∼ t−d + E(x)t + · · · . (4.7)

Let T00(t, x) be the energy density, regularized by an exponential cut-off as discussed below
(3.5). The relation between T00(t, x) and T (t, x, x) is less straightforward than that between
their global counterparts, E(t) and T (t). The analogue of (4.2) yields only the terms in (3.1)
involving time derivatives. The other terms can be obtained [18] by applying appropriate
spatial partial derivatives to the integral kernel of the operator

1√
H

e−t
√

H (4.8)

which has not been as extensively studied as the cylinder operator but has a very similar
nature. (Note that the original cylinder kernel is the time derivative of this new one.) For
the qualitative considerations of the present paper it is not necessary to delve further into the
details; it is not misleading to think of T00(t, x) as ‘essentially’ the t-derivative of T (t, x, x).
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This is as far as the heat kernel can take us. To find E(x) one must do independent
calculations. But the literature, notably [12, 31, 41], provides considerable information about
the behaviour of the renormalized T00(x) as x approaches a boundary. Our task now is to
compare these expansions in distance from the boundary (which we once again denote by x)
to the expansions (in t) of the regularized total energy, the derivatives of (4.3)–(4.5). The point
is that the finite, renormalized energy density generally is not integrable up to the boundary,
and if such divergent terms are taken seriously (and not compensated by postulated terms
concentrated exactly on the boundary [31], whose discussion we postpone to section 5), then
for consistency they must somehow be reflected in terms of E(t) that become infinite in the
limit t → 0 and hence would be removed in a conventional renormalization of the energy.

4.1. Dimension 1

The energy density found by Romeo and Saharian [41] near a Robin endpoint (with ξ = 1
4 )

can be correlated with the derivative of (4.3) as follows:

T00 ∼ ∞ +
S

x2
+

γ

x
+ γ 2 ln x + finite

↓ ↓
?

↓ ↘ ↓ ↙↘

E ∼ V

t2
+ γ ln t + (E + γ ) + γ 2t + · · · .

(4.9)

The leading ∞ in T00 is the universal, x-independent formal vacuum energy of infinite empty
flat space, which everyone agrees should be discarded in renormalization. It is included here
because it clearly corresponds directly to the volume divergence in E. The arrows indicate
how other terms in the two series might be related, on the basis of their dependence on γ .
(Whether all these arrows represent genuinely existing relationships remains to be investigated
by a thorough and rigorous calculation of T00(t, x, x), followed by an integration over x with
t finite but approaching 0. That project is beyond our present scope.) The most striking
observation is that the ‘surface’ term in the density has completely disappeared from the total
energy. (Recall that the corresponding term in (4.3) was destroyed by the differentiation.) The
1/x term in the density might be held responsible for the ln t term in the energy, as well as
part of the finite term. The ln x term is integrable, and its integral is presumably included in
E. Finally, we note that all the explicitly γ -dependent terms in E will be independent of the
length of the cavity, so they will not contribute to the Casimir force between the endpoints
(usually considered the only quantity of experimental relevance). The force must come entirely
from E.

4.2. Dimension 2

From now on, for brevity, the Robin function, γ , will not be explicitly indicated in the displays
(4.10) and (4.11), because it enters in the same way as the curvature, κ . I do not know a
reference for the dependence of T00(x) upon κ in dimension 2, but it appears to be dictated
by dimensional analysis and analogies with the Robin formula [41] and the three-dimensional
results [12].

T00 ∼ ∞ +
S

x3
+

κ

x2
+

κ2

x
+ κ3 ln x + finite

↓ ↓ ↓
?

↓ ↘ ↓ ↙↘

E ∼ V

t3
+

S

t2
+ κ2 ln t + (E + κ2) + κ3t + · · · .

(4.10)
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Most noteworthy here are the term κ2/x in the density and the corresponding term κ2 ln t in the
total energy. The analogous terms in dimension 3 are proportional to κ3. When total energy
calculations are done for both the inside and the outside of a boundary surface (a ‘shell’
modelling a thin electrical conductor), it has often been noted that divergent contributions
proportional to odd powers of κ will cancel, because κ has opposite signs on the two sides.
This fact gives rise to an important difference between even and odd dimensions. In even
dimensions, the ln t term in E is proportional to an even power of κ , so it survives even for
thin shells. Logarithmic terms in E(t) regularized by ultraviolet cut-off are precisely the
divergences that persist in analytic regularization schemes, giving rise, under even the most
liberal interpretation [4], at least to ambiguous finite terms in the renormalized energy that
depend logarithmically on an arbitrary mass scale. In dimensional regularization, the κd

divergence shows up as a pole at each even value of d in the total Casimir energy associated
with a spherical shell [35]. Here we have seen in a more direct, elementary way that such a
term is dictated by the known form of the heat kernel.

4.3. Dimension 3

We are now in the domain of the classic results of Deutsch and Candelas [12] and Kennedy
et al [31], which also apply to the electromagnetic field.

T00 ∼ ∞ +
S

x4
+

κ

x3
+

κ2

x2
+

κ3

x
+ O(ln x)

↓ ↓ ↓ ↓
?

↓ ↘ ↓

E ∼ V

t4
+

S

t3
+

κ

t2
+ κ3 ln t + (E + κ3) + · · · .

(4.11)

Let us review the litany of special features [7, 12] that make the Casimir force on a spherical
conducting shell finite, even when calculated by integrating the energy density right up
to the boundary: The volume term is removed by the local renormalization. The surface
term vanishes for electromagnetism because of a cancellation between electric and magnetic
contributions. The κ and κ3 terms cancel (between inside and outside) for any thin shell.
That leaves κ2. In dimension 2, κ is a symmetric matrix with two eigenvalues, κ1 and κ2 (the
principal curvatures). There are thus two independent quadratic invariants to be integrated
over ∂M , which may be chosen as

D ≡ κ1κ2 � ≡ (κ1 − κ2)
2. (4.12)

For a sphere, � is identically zero. For any closed surface,
∫
∂M

D(x) dS is a topological
invariant by the Gauss–Bonnet theorem, so its derivative with respect to the sphere’s radius
vanishes. (More generally, for any bounded region M, any quadratic integral of the type∫
∂M

κ2 dS is constant under a shape-preserving magnification of M, even if � is involved.
Note that this observation does not settle how the energy per unit length of an infinitely long
cylinder depends on the radius, since the scaling of the area is different in that case.) As
emphasized by Candelas [7, 8, 12], one would nevertheless expect infinite energy differences
to result from shape-changing deformations of a closed surface, because of the � term. It is
therefore significant that no term of the type κ2/t can appear in the regularized total energy,
E(t), because of the structure of the traced cylinder expansion (2.4) or (4.5). We return to this
issue in the next section.
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5. Implications

The theory of vacuum energy in electromagnetism has increasing experimental verification and
many indirect implications for observable phenomena. Nevertheless, the simplest and crispest
theoretical models tend to be idealizations that are not directly testable. Perhaps for this
reason, controversies persist about renormalization procedures and the physical significance
of various divergences. These disputes fall into two main categories.

First, there is the broad question of whether ‘logarithmic’ divergences are a sign of a bad
model, or just an inherent renormalization ambiguity. Among the divergences that arise in
energies regularized by point-splitting or ultraviolet cut-offs, such as the second line of (4.11),
only those proportional to ln t survive [4, 11, 30] in analytic regularization schemes, where
they appear as poles at the physical values of the regularization parameters. The analytic
methods therefore give finite energies automatically in many problems, without a need for
a renormalization subtraction, but in some other problems are embarrassed by a surviving
divergence whose removal introduces an unavoidable ambiguity parametrized by an arbitrary
length or mass scale. Some authors [4, 31] regard this as not at all a problem, while others
regard the poles as ‘truly disturbing’ [35, p 199] or at least puzzling.

Second, and specific to Casimir calculations, is the question of whether the nonintegrable
divergences in the renormalized energy density near boundaries must be taken seriously, even
in cases when the renormalized total energy (or the observable force) is finite. In fact, how
can such a divergence even be regarded as logically consistent with a finite total energy? Both
Kennedy et al [31] and Milton and co-workers [34, 35, 37] trust the calculations of finite total
energies and forces more than the calculations of local energy densities. Kennedy et al argued
that the infinities in T00(x) must be compensated by delta-function terms concentrated exactly
on the boundary itself, so that the finite total energy predicted by zeta-function calculations
will result. (The boundary term in (3.3) originated in this discussion in [31], without a clear
explanation of how it could be relevant when ξ = 1

4 or γ = 0 or ∞.) Milton writes
[35, p 237], ‘. . . [T]he local vacuum-fluctuation energy density is to a large extent
meaningless.. . . [D]ivergences in the energy which go like a power of the cutoff are probably
unobservable, being subsumed in the properties of matter.’

On the other hand, Candelas and Deutsch [7, 8, 12] argued that the boundary infinities
in the energy density are real (within the theory) and must be regarded as a defect of an
overly idealized model. This position has recently been reexpressed by Graham, Jaffe, and
co-workers [23–26, 39]. The argument, stated in electromagnetic terms, is that no real material
is perfectly conducting at arbitrarily high frequencies. When an idealized boundary is replaced
by a more realistic model of the interaction of the quantized field with other matter, the infinite
pileup of energy near the boundary will become finite, but possibly very large and definitely
physically real. A strong argument for this position is that the energy–momentum tensor
acts as the source of the gravitational field, so a nonintegrable singularity in it is physically
unacceptable, even if the total energy comes out finite by virtue of a cancellation (as happens
in some scenarios involving thin shells).

The present paper does not resolve all these issues, but it casts some light on them and
suggests some directions for future research that will clarify them further, as indicated in the
following remarks.

5.1. Thin shells, Robin divergences

Much has been made of the disappearance of some divergences by cancellation in the case
of thin shell boundaries. The dimensional dependence (even versus odd) of this effect is
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quite clear from (4.9)–(4.11) and their antecedents. Those formulae also indicate analogous
divergences specific to boundaries with nontrivial Robin coefficients, which were discovered
in [41] but could have been anticipated from an understanding of the relation between vacuum
energy and the heat kernel. Note that there is no reason to expect any cancellation of exterior
and interior Robin effects for a thin boundary.

5.2. Disappearing x− 2 terms, total derivatives, conductors with anisotropic curvature

A pervasive feature of (4.9)–(4.11) is that terms in T00 proportional to x−2 (x being distance
to the boundary) never have counterparts in the regularized total energy. On grounds of
dimensional analysis such terms would be expected to appear in E(t) and be proportional
to t−1, but the derivation of E(t) from the heat and cylinder kernels shows that they are not
there! (The crucial fact is that terms proportional to tn ln t occur in the cylinder kernel only if
n is odd and positive—in particular, not for n = 0.) This absence of t−1 terms was noted by
Cognola et al [11], and very recently by Bernasconi et al [2], who found that it persists when
the exponential cut-off is replaced by a Gaussian one.

In dimension 1 the x−2 term is precisely the one associated with nonconformal coupling—
that is, the leading boundary divergence, which (in any dimension, but for a scalar field)
does not occur for ξ = ξc and arises for other values of ξ from a term proportional to
(ξ − ξc)∇ · (φ∇φ) in the formal energy density (cf (3.1) and ensuing discussion). Since this
term is a total derivative, it ought to give 0 when integrated. Effectively this seems to be true,
since the renormalized total energy is finite and independent of ξ . As has been recognized
(if not ‘understood’) since [12] and [31], integration over x somehow does not commute with
renormalization. There is a simpler and completely understood analogous situation with the
heat kernel: the local heat expansion (4.6) is nonuniform in x, and hence integrating it over M
does not yield the correct trace expansion (4.1). The interesting terms in the latter come from a
part of K(t, x, x) that concentrates entirely on the boundary in the limit t → 0. It is tempting
to think of the boundary terms in T00 (see (4.9)–(4.11)) as the cylinder-kernel analogues of
these boundary terms in K, but they are not: they are nonvanishing even when t = 0. More
likely, there is some other part of T (t, x, x) that concentrates right on the boundary in the limit
and partly or wholly compensates the integrals of the energy divergences near the boundary.
This would corroborate, within the framework of ultraviolet regularization, the proposal of
Kennedy et al [31], made in the framework of zeta-function regularization. (It would not,
however, solve the problem of a singular Einstein equation.)

We propose, therefore, a program to calculate T (t, x, x) in various models for finite t and
to integrate it over x, and then to examine the limit t → 0. The expectation is that the results
(including contributions from the kernel of (4.8) if necessary) will be fully consistent with the
direct regularization and renormalization of the total energy, and that the details of the process
will demonstrate precisely how the terms in the expansion of the renormalized T00(x) near the
boundary are related,consistently, with the divergent terms in E(t). Some steps in this program
can already be extracted from the literature: Parentani [40] has made a similar observation in
the context of a uniformly accelerating boundary. Ford and Svaiter [16], also with an eye to
resolving the paradox of the total energy of the nonconformally coupled scalar field, studied a
statistically fluctuating boundary. Their formulae seem mathematically identical to the results
of ultraviolet regularization with an arbitrary (not necessarily exponential) cut-off function,
with a fluctuation parameter in the place of t. They find (in dimension 3) that the nonconformal
term of T00 oscillates from negative to positive and back to negative, in such a way its integral
is indeed zero. Finally, Graham et al [23, 24, 26, 39] replace the ideal boundary with an
extended object modelled by a second quantized field. Their results are very similar to those
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of [16] in dimension 3 and have one fewer oscillation in dimension 2. (Olum and Graham
[39] also point out that the boundary itself, as a physical object, has an energy density of its
own that can be expected to swamp the energy induced in the scalar field; nevertheless, they
conclude that the total energy density remains negative in a small region displaced slightly
from the boundary.) All the available results suggest that the cancellation is insensitive to the
functional form of the ultraviolet cut-off, and also to its physical interpretation (fluctuating
boundary, soft boundary or mere mathematical device).

In dimensions greater than 1 the leading boundary divergence associated with a
nonconformal stress tensor does not go as x−2, so the additional boundary terms that render the
regularized energy ξ -independent are not related (at least, not directly) to the x−2-versus-t−1

phenomenon. Instead, that phenomenon would appear to have some other implications. In
particular, in dimension 3 it indicates that E contains no term proportional to � = (κ1 − κ2)

2.
This conclusion seems to be robust against changes in the form of the ultraviolet cut-off
[2]. But local density calculations indicated to Candelas and Deutsch [7, 8, 12] that that
term would be not only large but also negative (persisting into the renormalized energy for
a physical conductor), thereby rendering a conducting foil unstable against wrinkling. This
may well be true for a physical, imperfect conductor. However, in the framework of formal
ultraviolet regularization of the idealized theory, our conjecture is that there is a compensating
positive term that concentrates right on the boundary as the regularization parameter is taken
to 0, thereby removing the apparent conflict between local and global calculations. Clearly,
detailed calculations are needed to verify this conjecture and to establish its relevance to
realistic conductors. (Incidentally, the sharp-eyed modern reader may note that the original
argument concerning the � term in appendix A of [12] incorrectly assumed that it is correlated
with a term of order ω−1 in a formal expansion of the counting function µ. Indeed, Candelas
pointed out in a later paper [7, section 7.3] that no such term exists in µ, but that its alleged
effects can still arise in the integrated contribution of the oscillatory part of the eigenvalue
distribution. In the terminology of our section 2, the relevant terms in the cylinder kernel and
in T00 are associated with constants of integration in Riesz means rather than with the local
behaviour of µ′(λ), or even µ(λ), at large λ. Therefore, this tangential technical issue in no
way invalidates the physical conclusions of [12].)

5.3. Genuine surface effects

On the other hand, almost certainly there are some real near-boundary energies. In (4.9)–
(4.11) one observes terms of order x−1 in the renormalized energy density, which appear to
be related to the divergent terms of order ln t in the regularized total energy (although explicit
calculations, of the sort described above, should be performed to confirm this). As previously
mentioned, terms of the latter type are agreed to yield terms with inherently ambiguous
coefficients in the renormalized energy. Also, terms of order ln x in T00 are integrable and
presumably contribute part of the finite term in E.

5.4. Nonrelativistic Casimir energy?

Milton raises the question of why, mathematically, there is no Casimir energy in nonrelativistic
quantum theory [35, p 30]. (Physically, such energy cannot exist because the relativistic
effect vanishes exponentially with large field mass.) He mimics the relativistic zeta-function
calculation—for parallel plates with Dirichlet conditions—and finds an expression containing
a gamma function in the denominator, whose pole forces the quantity to vanish in the relevant
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limit. The same conclusion can be reached more transparently from our point of view. The
formal energy is

E = 1

2

∑
n

ωn
2

2m

which can be regularized in analogy with (4.2) as

1

4m

d2

dt2

∑
n

e−tωn .

But the sum here is simply T (t), which has, as in (4.9)–(4.11), the schematic form

T (t) ∼ divergent terms + Et + (κd+1 + · · · + γ d+1)t2 + Ft3 + · · ·
the coefficient of the t2 term being dictated by the heat-kernel expansion. Therefore, in the
renormalized energy one gets

d2T

dt2

∣∣∣∣
t=0

= 0

because κ and γ are zero in the system studied.

6. Conclusion

In summary, what we have shown is that various results for specific models that previously
emerged from forests of gamma and Riemann zeta functions are now easy consequences
of the known general forms of the heat and cylinder expansions. There are, to be sure,
enough gamma functions in [20] and section 2 to satisfy anyone, but they are handled once
and for all in the general theory, rather than arising in each concrete calculation out of some
physically opaque analytic continuation. With respect to the controversies over global surface-
energy renormalization versus local energy-density calculations, we have not taken a position
squarely on either side. Rather, we have presented evidence that each side is correct in certain
respects. In particular, a mechanism of partial surface cancellation has been pointed out that
shows promise of reconciling the two points of view. For the leading boundary divergence
of the scalar field, this mechanism has been fairly well established by other researchers
[16, 26, 40]; for the x−2 divergence, it is conjectured by the present author as the only visible
way of restoring consistency between the mathematical structures of the local and global
asymptotic expansions.
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Note added in proof. What we have called ‘cylinder kernel’ is named ‘Poisson kernel’ in the mathematical literature.
Also, the kernel of the operator (4.8) equals the restriction to positive t of the Green function used by C M Bender
and P Hays (1976 Phys. Rev. D 14 2622–32) and hence the regularization (4.2) is equivalent to the prescription of
Bender and Hays.
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